

Virus interaction of wild and farmed fish populations

Kyle Garver Pacific Biological Station

Acknowledgments

- Institute of Ocean Science
 - Mike Foreman
 - Dario Stucchi
 - Ming Guo
- Pacific Biological Station
 - Jon Richard
 - Laura Hawley
 - Amelia Mahony
 - Stewart Johnson
 - Cecile Van Woensel
 - Anita Müller
- Western Fisheries Research Center
 - Gael Kurath
 - Rachael Bretta

Funds:

ACRDP: Aquaculture Collaborative Research and Development program

PARR: Program for Aquaculture Regulatory Research

GRDI: Genomics Research and Development Initiative

NSERC: Natural Sciences and Engineering Research Council

Issue

• Viral spillover...can it be predicted?

Does virus spill-back occur?

Key questions concerning virus dispersal from farms

How much virus is produced from an infected farm?
Viral shedding rates of Atlantic salmon

2. How long can the virus last outside of its host?- Virus decay in seawater

3. How much free virus is needed to infect a naïve farm?
Minimum infectious dose

Infectious Hematopoietic Necrosis Virus (IHNV)

- In BC, IHNV is primarily associated with Sockeye salmon
- Can cause large-scale mortality events

Quantify Virus Transmission Parameters through Controlled Laboratory Studies

IHNV shedding set-up

IHNV shedding in Atlantic salmon

Peak shedding rate = 3.2 x 10⁷ PFU fish⁻¹ hour⁻¹

Day post IHNV exposure

Virus decay in seawater

• Challenge – Finding appropriate laboratory condition to simulate ocean environment

Multiple environmental conditions

IHNV decay in seawater

Virus decay by sunlight

Minimum Infectious Dose (MID)

Waterborne exposure of Atlantic Salmon to IHNV

- 1 hour static immersion challenge
- Challenge dose (PFU ml⁻¹)
 - 10⁴,10³, 10², 10¹
- Monitor for mortality and assay for virus

Minimum infectious Dose

Water circulation model for the Discovery Islands

Finite Volume Coastal Ocean Model (FVCOM)

Foreman et al. Atmosphere-Ocean 2012, Vol 50:3 pp.301-316

A Street with a street when

Virus dispersion model

 Coupling IHNV transmission parameters to physical oceanographic water circulation model

Connectivity Tables

How can the model be used?

Established a tool to provide accurate geospatial predictions of risk of IHNV spillback

- Refine management zones based on connectivity
- Evaluate effect of disease management strategies (i.e. vaccination)
- Risk to sockeye salmon (requires knowledge of infectious dose)

Sockeye Smolt Susceptibility?

Atlantics

Minimum infectious Dose

Sockeye smolts are 100X less susceptible than Atlantic salmon smolts

Use of APEX-IHN and effect on virus spread?

- Since licensing, >60 million doses of the vaccine have been administered
- What is the risk of virus dispersion from a Atlantic salmon net-pen that has been APEX-IHN vaccinated?
 - Do vaccinated fish shed an infectious dose of virus?

IHNV Transmission potential of **APEX vaccinated Atlantics**

25 IHNV (ip injected) **APEX** Atlantic = **Donor** 25 Naïve Atlantic smolts

25 **Donor**40 Naïve sockeye smolts

Note: each challenge done in duplicate tanks

Results

APEX Atlantic : Atlantic

<u>Tank #2</u>

Results

APEX Atlantic : Sockeye

<u>Tank #2</u>

Results

Atlantic : Atlantic

Atlantic : Sockeye

Summary

- APEX-IHN vaccinated Atlantic salmon are highly protected against IHN disease when exposed to a lethal dose virus.
- APEX-IHR vaccinated Atlantic salmon greatly reduce the viral transmission potential to wild and farmed salmon.
- Model simulations incorporating vaccine usage can now be run to evaluate impact on farm connectivity

Issue

• Viral occurrence in wild fish?

What drives IHNV prevalence in a population?

Epidemiological Approach:

Study patterns to identify risk factors for disease

- Is there a correlation between the density (escapement) of sockeye with pathogen prevalence
- Is pathogen prevalence dependent upon fish size and/or age?
- Does the presence/intensity of one pathogen impact infection of others?

IHNV Basic Biology: filling in knowledge gaps

• Life cycle of IHNV

IHNV Disease Ecology: Knowledge Gaps

Modified from Bootland, L.M. and Leong, J.C. 1999: Fish Diseases and Disorders, Volume 3

Health Assessment of Sockeye Smolts: Sampling 2010 - 2011 - 2012

and Pathogen Screening (IHNV)

IHNV detected in marine phase sockeye salmon

Year	# of Sockeye smolts	% IHNV Positive
2010	169	0.59
2011	775	4.8
2012	478	0
All	1479	2.6

First evidence of IHNV in Sockeye smolts, suggests IHNV carrier state.

The Smoking Gun?

Virus strain typing

IHNV from Sockeye smolts grouped into 2 sequence Type #1 = mG050U Type #2 = mG251U

Type #1 (mG050U) = IHNV farmed Atlantic salmon

Sockeye carriers are likely source of virus to marine farmed Atlantic salmon.

What's next?

Laboratory Challenges: IHNV in Sockeye salmon

***** Successfully generated IHNV carriers in the laboratory

Current Investigations:

Host response and physiological consequence of being a carrier & potential for reactivation

Epidemiological Consequences

Is this how IHNV is maintained in a salmon population?

<u>References</u>

Müller, A., Sutherland, B.J.G., Koop, B.F., Johnson, S.C., Garver, K.A. (2015) Infectious hematopoietic necrosis virus (IHNV) persistence in Sockeye Salmon: effect on brain transcriptome and response to the viral mimic poly(I:C). BMC Genomics 2015, 16:634 doi:10.1186/s12864-015-1759-y.

Foreman, M.G.G., Guo, M., Garver, K.A., Stucchi, D., Chandler, P., Wan, D., Morrison, J., Tuele, D. (2015) Modelling infectious hematopoietic necrosis virus dispersion from marine salmon farms in the Discovery Islands, British Columbia, Canada. PLoS ONE 10(6): e0130951. doi:10.1371/journal.pone.0130951

Garver, K.A., Mahony, A., Stucchi, D., Richard, J., Van Woensel, C., Foreman, M., (2013) Estimation of waterborne transmission parameters associated with IHNV infection in Atlantic salmon. PLoS ONE 8(12): e82296. doi:10.1371/journal.pone.0082296

Foreman, M.G.G, Stucchi, D.J., Garver, K.A., Tuele, D., Isaac, J., Grime, T., Guo, M. (2012) A Circulation Model for the Discovery Islands, British Columbia. Atmosphere-Ocean 50 (3), 301-316.

